The search functionality is under construction.

Author Search Result

[Author] Yutaka MIYAMOTO(25hit)

21-25hit(25hit)

  • FOREWORD Open Access

    Yutaka MIYAMOTO  

     
    FOREWORD

      Vol:
    E103-B No:11
      Page(s):
    1182-1182
  • S-Band WDM Transmission Using PPLN-Based Wavelength Converters and 400-Gb/s C-Band Real-Time Transceivers Open Access

    Tomoyuki KATO  Hidenobu MURANAKA  Yu TANAKA  Yuichi AKIYAMA  Takeshi HOSHIDA  Shimpei SHIMIZU  Takayuki KOBAYASHI  Takushi KAZAMA  Takeshi UMEKI  Kei WATANABE  Yutaka MIYAMOTO  

     
    PAPER

      Pubricized:
    2023/05/11
      Vol:
    E106-B No:11
      Page(s):
    1093-1101

    Multi-band WDM transmission beyond the C+L-band is a promising technology for achieving larger capacity transmission by a limited number of installed fibers. In addition to the C- and L-band, we can expect to use the S-band as the next band. Although the development of optical components for new bands, particularly transceivers, entails resource dispersion, which is one of the barriers to the realization of multi-band systems, wavelength conversion by transparent all-optical signal processing enables new wavelength bandtransmission using existing components. Therefore, we proposed a transmission system including a new wavelength band such as the S-band and made it possible to use a transceiver for the existing band by performing the whole-band wavelength conversion without using a transceiver for the new band. As a preliminary verification to demonstrate multi-band WDM transmission including S-band, we investigated the application of a novel wavelength converter between C-band and S-band, which consists of periodically poled lithium niobate waveguide, to the proposed system. We first characterized the conversion efficiency and noise figure of the wavelength converter and estimated the transmission performance of the system through the wavelength converter. Using the evaluated wavelength converters and test signals of 64 channels arranged in the C-band at 75-GHz intervals, we constructed an experimental setup for S-band transmission through an 80-km standard single-mode fiber. We then demonstrated error-free transmission of real-time 400-Gb/s DP-16QAM signals after forward error correction decoding. From the experimental results, it was clarified that the wavelength converter which realizes the uniform lossless conversion covering the whole C-band effectively achieves the S-band WDM transmission, and it was verified that the capacity improvement of the multi-band WDM system including the S-band can be expected by applying it in combination with the C+L-band WDM system.

  • Ultra-High Capacity Optical Transmission Technologies for 100 Tbit/s Optical Transport Networks Open Access

    Akihide SANO  Takayuki KOBAYASHI  Eiji YOSHIDA  Yutaka MIYAMOTO  

     
    INVITED PAPER

      Vol:
    E94-B No:2
      Page(s):
    400-408

    This paper describes ultra-high capacity wavelength-division multiplexed (WDM) transmission technologies for 100-Tbit/s-class optical transport networks (OTNs). First, we review recent advances in ultra-high capacity transmission technologies focusing on spectrally-efficient multi-level modulation techniques and ultra-wideband optical amplification techniques. Next, we describe an ultra-high capacity WDM transmission experiment, in which high speed polarization-division multiplexed (PDM) 16-ary quadrature amplitude modulation (16-QAM), generated by an optical synthesis technique, in combination with coherent detection based on digital signal processing with pilotless algorithms, realize the high spectral efficiency (SE) of 6.4 b/s/Hz. Furthermore, ultra-wideband hybrid optical amplification utilizing distributed Raman amplification (DRA) and C- and extended L-band erbium-doped fiber amplifiers (EDFAs) is shown to realize 10.8-THz total signal bandwidth. By using these techniques, 69.1-Tbit/s transmission is demonstrated over 240-km of pure silica-core fibers (PSCFs). Furthermore, we describe PDM 64-QAM transmission over 160 km of PSCFs with the SE of 9.0 b/s/Hz.

  • Frequency-Domain Equalization for Coherent Optical Single-Carrier Transmission Systems

    Koichi ISHIHARA  Takayuki KOBAYASHI  Riichi KUDO  Yasushi TAKATORI  Akihide SANO  Yutaka MIYAMOTO  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E92-B No:12
      Page(s):
    3736-3743

    In this paper, we use frequency-domain equalization (FDE) to create coherent optical single-carrier (CO-SC) transmission systems that are very tolerant of chromatic dispersion (CD) and polarization mode dispersion (PMD). The efficient transmission of a 25-Gb/s NRZ-QPSK signal by using the proposed FDE is demonstrated under severe CD and PMD conditions. We also discuss the principle of FDE and some techniques suitable for implementing CO-SC-FDE. The results show that a CO-SC-FDE system is very tolerant of CD and PMD and can achieve high transmission rates over single mode fiber without optical dispersion compensation.

  • Suppression of the Cross-Gain Modulation in Remotely-Pumped EDF/DRA Hybrid Inline Amplifier Systems with Online OTDR for Gain Monitoring

    Hiroto KAWAKAMI  Hiroji MASUDA  Kenji SATO  Yutaka MIYAMOTO  

     
    PAPER-Transmission Systems and Technologies

      Vol:
    E88-B No:5
      Page(s):
    1986-1993

    Novel gain monitoring scheme in Remotely-Pumped EDF/DRA hybrid inline amplifier is proposed using Optical Time Domain Reflectometer (OTDR). Signal degradation due to cross gain modulation (XGM) caused by an OTDR pulse in the distributed Raman amplifier (DRA) section and remotely-pumped EDF (RP-EDF) unit is analyzed theoretically. The required conditions for suppressing of XGM in the DRA section are derived. We propose the directional bypass configuration to realize OTDR measurement without XGM in the EDF unit. Transmission experiments using the RP-EDF/DRA hybrid inline amplifier demonstrate the absence of transmission impairement induced by OTDR. An analysis of the OTDR trace for each gain medium is also discussed. The theoretical analysis agrees well with the experimental result.

21-25hit(25hit)